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Abstract Ergin & Sönmez (2006) showed that for schools it is a dominant
strategy to report their preferences truthfully under the Boston mechanism,
and that the Nash equilibrium outcomes in undominated strategies of the
induced game are stable. We show that these results rely crucially on two
assumptions. First, schools need to be restricted to reporting all students as
acceptable. Second, students cannot observe the preferences reported by the
schools before submitting their own preferences. We show that relaxing either
assumption gives schools an incentive to manipulate their reported prefer-
ences. We provide a full characterization of undominated strategies for schools
and students for the simultaneous move game induced by the Boston mecha-
nism. Nash equilibrium outcomes in undominated strategies of that game may
contain unstable matchings. Furthermore, when students observe schools’ pref-
erences before submitting theirs, the subgame perfect Nash equilibria of the
sequential game induced by the Boston mechanism may also contain unstable
matchings. Finally, we show that schools may have an incentive to manipulate
capacities only if students observe the schools’ strategies before submitting
their own preferences.
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1 Introduction

Having their children attend a good school is an important concern for many
parents. Until recently, in many countries parents did not have much choice
when it came to choosing the public school their children would attend, as most
children were administratively assigned to a school nearby. In their seminal
contribution Abdulkadiroğlu and Sönmez (2003) analyzed school assignment
procedures in Boston and other cities in the U.S., and suggested the student-
proposing deferred acceptance mechanism (DA, Gale and Shapley, 1962) and
the top trading cycles mechanism (TTC, Roth and Postlewaite, 1977) as meth-
ods to allocate students to schools. One argument in favor of the DA and TTC
over the mechanism used in Boston at that time (referred to commonly as the
Boston mechanism) is that reporting preferences truthfully under these mech-
anisms is a dominant strategy. Under the Boston mechanism, on the other
hand, students may obtain better assignments by strategically manipulating
the preferences over the schools they report.

The Boston mechanism lets each student apply to schools in the order of
their reported preferences. Schools in each round consider all applications re-
ceived in that round, accept the applications from the highest-ranked students
according to the schools’ preferences or some exogenous ranking over students,
until their capacities are filled, and reject the remaining applicants. In sub-
sequent rounds, rejected students apply to their next highest-ranked school.
The schools which still have seats available again accept the applications from
the highest-ranked students until their capacities are filled.

This paper revisits the question of the possibility of manipulations by
schools under the Boston mechanism. Ergin and Sönmez (2006) showed that
under the Boston mechanism it is a dominant strategy for schools to truthfully
rank the students. This paper shows that for this result to hold, schools need
to be restricted to finding all students acceptable, and that students cannot
observe the rankings set by the schools before submitting their preferences.
If schools are allowed to deem students unacceptable, we show that doing so
may yield a better matching from the schools’ point of view. In addition, Er-
gin and Sönmez (2006) showed that, taking schools’ rankings as given, the set
of Nash equilibrium outcomes under the Boston mechanism equals the set of
stable matchings. Since the (student-proposing) DA mechanism always yields
the student-optimal stable matching, this implies that the Boston mechanism
is Pareto dominated by DA if all students behave strategically. We show that
if schools are strategic and can deem students unacceptable then there may
be Nash equilibria in undominated strategies whose outcomes are not stable
with respect to the true preferences (and capacities) of students and schools.
Moreover, we show that if students are allowed to observe the rankings set
by the schools prior to submitting their preferences, it is also the case that
schools may have an incentive to manipulate the rankings over students or
their capacities, even if they cannot declare any of them to be unacceptable,
and that the set of subgame perfect Nash equilibria of the induced game may
contain unstable matchings.
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We also provide a full characterization of the set of undominated strategies
for both students and schools under the game induced by the Boston mecha-
nism. Students’ undominated strategies never involve declaring an acceptable
school as unacceptable, but may change the relative ranking among acceptable
schools. In contrast, schools may have incentives to declare some acceptable
students as unacceptable, but never find it optimal to deviate from truthfully
revealing their relative preferences over the students they declare acceptable.

The Boston mechanism and its properties have been analyzed by many
papers in the literature, starting from Roth (1991), which studies a variety of
matching procedures for regional medical labor markets in the UK. While some
regions used stable mechanisms (Edinburgh and Cardiff) others use priority
mechanisms (Newcastle, Birmingham, and Edinburgh), of which the Boston
mechanism is a special case.

While the use of the Boston mechanism has been criticized beginning with
Abdulkadiroğlu and Sönmez (2003) due to the possibility of gains from ma-
nipulation by students, a number of authors show that it has some desirable
properties. Abdulkadiroğlu, Che and Yasuda (2011) and Miralles (2009) both
argue in favor of the Boston mechanism on the grounds of ex ante cardinal
efficiency. In particular, when schools’ rankings are random and uniform and
students rank schools similarly but prefer them with different intensities, the
equilibrium outcome under the Boston mechanism yields higher expected wel-
fare than the deferred acceptance mechanism. The reason is that students who
put a particularly high cardinal value on a school are more likely to rank this
school highly and thereby obtain a seat there. Hence, the equilibrium under the
Boston mechanism makes use of information on preference intensities, while
the deferred acceptance mechanism does not.

Pathak and Sönmez (2008) analyze the Boston mechanism when there are
two types of students with different levels of strategic sophistication, while
schools’ rankings are taken as fixed. They show that sophisticated students
are better off under the Boston mechanism than naïve students. For these
authors this justifies the move toward non-manipulable mechanisms. Kojima
and Ünver (2014) give two characterizations of the Boston mechanism while
allowing for schools to deem some students unacceptable.

Mennle and Seuken (2014) distinguish between the ‘naïve’ Boston mech-
anism and the ‘adaptive’ Boston mechanism. They differ in that under the
adaptive Boston mechanism students in later rounds never apply to schools
whose slots were filled in earlier rounds. The mechanism designer thereby effec-
tively optimizes the students’ strategies on their behalf. The adaptive Boston
mechanism additionally involves randomly drawing schools’ rankings over the
students. As such, there is no scope for strategic behavior by the schools in
their paper. Dur (2015) considers the modified Boston mechanism which also
involves students never applying to schools that were filled in a previous round.
Unlike Mennle and Seuken (2014) he allows for schools’ rankings to be ex-
ogenously given, rather than randomly generated. The author also does not
consider a strategic role for the schools. Dur (2015) shows that the modified
Boston mechanism is less manipulable than the Boston mechanism in the sense
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of Pathak and Sönmez (2013) and that the set of Nash equilibria induced by
the (complete information) preference revelation game equals the set of stable
matchings under the true preferences.

Pais and Pintér (2008) experimentally compare the performance of the
Boston, DA, and TTC mechanisms in terms of efficiency and manipulability.
As expected from the theory, the frequency of manipulation under the Boston
mechanism is greater than under the other two strategy-proof mechanisms,
especially when participants (taking the role of the students) are given more
information.

Schools’ ability to independently determine rankings over students is present
in many school choice procedures currently being used. Procedures for match-
ing students to elementary schools in Ireland (Chen, 2016) and for secondary
education in Amsterdam (De Haan, Gautier, Oosterbeek and Van der Klaauw,
2015) and Berlin (Basteck, Huesmann and Nax, 2016), for example, explicitly
allow for schools to determine, sometimes subject to approval by the district
school board, the criteria to be used to select students when demand exceeds
the number of seats. Other than Ergin and Sönmez (2006), however, to our
knowledge only two other papers consider the question of the manipulation of
the Boston mechanism by schools.

Kojima (2008) generalized the earlier results of Ergin and Sönmez (2006)
to a model in which restrictions on the possible preferences of the schools are
relaxed. Treating schools’ preferences as given, he shows that if schools’ prefer-
ences satisfy a substitutability condition then the Nash equilibrium outcomes
under the Boston mechanism are stable. He also shows that stable matchings
can be supported by Nash equilibria under more general preference structures.
He further provides an example in which a school may profitably manipulate
the Boston mechanism when its preferences satisfy substitutability but not
responsiveness. Since we show that schools with responsive preferences may
profitably manipulate the Boston mechanism by declaring some student unac-
ceptable, this result is implied by our paper. More specifically, our result shows
that it is not necessary to extend schools’ preferences beyond responsiveness
to obtain incentives for manipulation.

Ehlers (2008) considers manipulations of priority mechanisms (manipula-
tions by schools under the Boston mechanism being a special case of them)
under incomplete information. The author shows that when agents have sym-
metric (incomplete) information, any non-truncation strategy is stochastically
dominated by a truncation1 of the true preferences of that agent. That does
not imply our results, however, since it relies on his specific assumptions over
beliefs. This strategic behavior under symmetric information is explored ex-
perimentally by Featherstone and Mayefsky (2015). Finally, the game induced
by schools’ ability to manipulate their capacities is analyzed in a series of pa-
pers for the case of stable mechanisms (Ehlers, 2010; Konishi and Ünver, 2006;

1 A truncation strategy leaves the true preference over students unchanged, but might drop some
acceptable students.
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Romero-Medina and Triossi, 2013). None of these results, however, imply our
results on capacity manipulation.

We introduce our model and the variants of the Boston mechanism that
we consider in section 2. Results concerning manipulability by schools and the
stability of the Nash equilibria under the simultaneous Boston mechanism are
obtained in section 3. The sequential Boston mechanism is analyzed in section
4. Proofs absent from the main text are in the appendix.

2 Model

A two-sided matching market consists of:

1. A finite set of students I “ ti1, . . . , inu,
2. A finite set of schools S “ ts1, . . . , smu,
3. A capacity vector q “ pqs1 , . . . , qsmq,
4. A list of strict student preferences PI “ pPi1 , . . . , Pinq and
5. A list of strict school preferences PS “ pPs1 , . . . , Psmq .

We assume that n ě 2 and m ě 2. Preference relations Pi for students are over
the set of schools and the option of remaining unmatched, that is, S Y tHu.
For s ‰ s1 P S if sPis1 we say that student i strictly prefers school s to
school s1. Preference relations of the schools, Ps, are over sets of students. For
J ‰ J 1 Ď I if JPsJ 1 we say that school s prefers having students J over having
students J 1. Preferences are complete and transitive. Capacities are positive
integers. For each school s P S and any positive integer qs the preference
relation Ps is responsive with capacity qs if for any set of students J Ă I
with |J | ă qs and students i, i1 R J , tiuPs ti1u if and only if J Y tiuPsJ Y ti1u,
J Y tiuPsJ ðñ tiuPsH and HPsJ for every J Ă I with |J | ą qs. For
most of our results, the knowledge of the schools’ preferences over individual
students, as opposed to sets of students, is sufficient. Therefore, in the absence
of ambiguity, we consider schools’ preferences to be represented by the former
type. Let PI be the set of all possible strict preferences over schools, and the
option of remaining unassigned, and PS be the set of all possible responsive
preferences, with capacities q, over sets of students. Moreover, for a student
i, let P´i be the set of all possible strict preference profiles over schools for
students Iz tiu, and P´s and q´s defined accordingly for school s. We use PS “
pPs, P´sq. From here on we abuse notation slightly by denoting singleton sets
by i or s. We say that student i is unacceptable according to Ps for school s if
HPsi. Unacceptable schools are defined analogously for students. We assume
that every school s has at least qs acceptable students and that each student
has at least one acceptable school. This is a very mild assumption, used for
technical purposes. For any agent x P IYS and her preference Px, we define the
corresponding weak preference relation Rx, where cRxc1 ðñ cPxc

1 or c “ c1.
A matching µ is a function from I Y S to subsets of I Y S such that:

– µ piq P S Y tHu and |µ piq| “ 1 for every student i,2

2 We abuse notation and consider µ piq as an element of S, instead of a set with an element of S.
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– µ psq Ď I and |µpsq| ď qs for every school s,
– µ piq “ s if and only if i P µ psq.

We allow for preferences to also be defined over matchings: µPiµ1 ðñ

µ piqPiµ
1 piq. The set of matchings is denoted by M. A matching is indi-

vidually rational if for every student i, µ piqPiH and for every school s and
every student i1 P µ psq, i1PsH. A matching µ is blocked by a student i and
school s if sPiµpiq and there is a set I 1 Ď µpsq Y tiu such that i P I 1 and
I 1Psµpsq. A matching µ is stable with respect to pPI , PS , qq if it is individu-
ally rational and is not blocked under those preferences and capacities. Often
we will simply say that a matching is stable. In that case we mean that it
is stable with respect to the true student preferences and school preferences
and capacities. A (school choice) mechanism Ψ is a mapping from the set
of students’ preferences, preferences (or rankings) over students, and schools’
capacities to the set of matchings, i.e., Ψ : PI ˆPS ˆNm` ÑM. A mechanism
is stable if it yields a stable matching for every profile of students’ preferences
and schools’ preferences and capacities.

A mechanism Ψ is manipulable by schools if there is a school s and
school preferences Ps, P 1s P Ps, capacities qs, q1s such that q1s ď qs, PI P PI and
P´s P P´s , q´ssuch that:

Ψ
`

PI ,
`

P 1s, P´s
˘

,
`

q1s, q´s
˘˘

PsΨ pPI , PS , qq

We distinguish between three types of manipulations by schools. First, a
mechanism Ψ is manipulable by declaring students unacceptable if it
is manipulable by a pair pP 1s, q1sq such that q1s “ qs and there exists some
i P I such that iPsH and HP 1si. Second, a mechanism Ψ is manipulable by
a ranking change if it is manipulable by a pair pP 1s, q1sq such that q1s “ qs
and for all i P I, iPsH implies iP 1sH. Third, a mechanism Ψ is manipulable
via capacities if it is manipulable by a pair pP 1s, q1sq such that P 1s “ Ps and
q1s ă qs. If a mechanism is not manipulable by schools we say that for that
mechanism truth-telling is a dominant strategy for the schools. Manipulability
by students is defined analogously, except students do not report capacities.

For a given mechanism Ψ and a school s with true preference and capacity
pPs, qsq we say that a strategy pP̃s, q̃sq with q̃s ď qs is dominated by strategy
pP 1s, q

1
sq, with q1s ď q, if for all PI , P´s, q´s it holds that

Ψ
`

PI ,
`

P 1s, P´s
˘

,
`

q1s, q´s
˘˘

RsΨ
´

PI ,
´

P̃s, P´s

¯

, pq̃s, q´sq
¯

Notice that, in principle, if two strategies give exactly the same outcome for
all strategies of the others, both would be dominated. In the context analyzed
in this paper, however, that never happens: no two different strategies will
yield the same outcome for all strategies of the others. If there is no strategy
that dominates pP̃s, q̃sq, we say that pP̃s, q̃sq is undominated. Undominated
strategies for students are analogously defined. If a mechanism is not manip-
ulable then it follows that reporting preferences truthfully is undominated.
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For manipulable mechanisms one cannot rely on the truthful revelation
of preferences by all agents. Instead, we will examine the induced complete
information preference revelation game and consider its Nash equilibria.

Definition 1. A strategy profile pP̃I , P̃S , q̃q, such that for all schools s P S,
q̃s ď qs, is a Nash equilibrium of the game induced by the mechanism Ψ
under pPI , PS , qq if the following conditions hold:

(i) for all s P S, q̂s ď qs and P̂s P Ps, it holds that:

Ψ
´

P̃I , P̃S , q̃
¯

RsΨ
´

P̃I ,
´

P̂s, P̃´s

¯

, pq̂s, q̃´sq
¯

(ii) for all i P I and P̂i P Pi, it holds that:

Ψ
´

P̃I , P̃S , q̃
¯

RiΨ
´´

P̂i, P̃´i

¯

, P̃S , q̃
¯

We say that Ψ
´

P̃I , P̃S , q̃
¯

is a Nash equilibrium outcome for prefer-

ences pPI , PSq and capacity q if
´

P̃I , P̃S , q̃
¯

is a Nash equilibrium of the game
induced by the mechanism Ψ under pPI , PS , qq.

For some results, we consider allowing students to observe reports by the
schools before submitting their own preferences. In that case the students’
strategy would no longer be the choice of a preference ordering but a pref-
erence ordering for each possible combination of preferences and capacities
reported by the schools. We denote by fi : PS ˆ Nm` Ñ Pi a strategy for a
student in a preference revelation game in which schools move first. Let Fi be
the set of strategies for student i and FI be the set of all possible strategy
profiles for the students. We say that a mechanism Ψ is a sequential (school
choice) mechanism if students can observe the schools’ reported preferences
before themselves simultaneously submitting preferences.3 To analyze schools’
incentives in a sequential mechanism, we restrict our attention to students’
strategies that are optimal against the other students’ strategies given the
submitted preferences and capacities of the schools. In other words, given the
schools’ reports the students are assumed to play Nash equilibrium strategies.
Since students’ strategies allow their reported preferences to arbitrarily de-
pend on preferences and capacities reported by the schools, there are many
unreasonable strategies for the students that would create artificial incentives
for the schools to deviate from truth-telling.4 Our restriction makes our results

3 There is an alternative concept of sequential mechanisms in the school choice literature due to Dur
and Kesten (2014). In their analysis schools are not strategic agents. There are two sets of
schools whose seats are filled sequentially. In the first round students are matched to one of
the schools in the first set, based solely on their preferences over those schools. In the second
round, students who were left unmatched in the first round are matched to the second set of
schools. In their case “sequential” thus refers to sequentially making an allocation decision.
This allows us to use different matching rules, such as the Boston mechanism, top trading
cycles or deferred acceptance for different rounds. In contrast, “sequential” in our paper
refers to schools submitting their preferences before the students with a fixed mechanism.

4 For example, all students could declare all schools unacceptable if only at least one school is truthful
but otherwise report preferences truthfully. In that case there is at least one school which
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on manipulations by schools stronger and more relevant, and manipulations
by schools would only be profitable when students’ strategies are “reasonable.”

Definition 2. A strategy profile of students fI P FI is sequentially rational
(with respect to a sequential mechanism Ψ) if for all

´

P̃S , q̃
¯

P PS ˆ Nm` and

for all i P I and f̂i P Fi it holds that:

Ψ
´

fI

´

P̃S , q̃
¯

, P̃S , q̃
¯

RiΨ
´´

f̂i

´

P̃S , q̃
¯

, f´i

´

P̃S , q̃
¯¯

, P̃S , q̃
¯

Definition 3. A sequential mechanism Ψ is sequentially manipulable by
schools if there is a school s, a school preference P 1s P Ps, a capacity q1s P Nm`
such that q1s ď qs, and a sequentially rational fI P FI such that:

Ψ
`

fI
``

P 1s, P´s
˘

,
`

q1s, q´s
˘˘

,
`

P 1s, P´s
˘

,
`

q1s, q´s
˘˘

PsΨ pfI pPS , qq , PS , qq

The above definition of manipulability of a sequential mechanism restricts
the set of strategies that students can play to those that are optimal for all pos-
sible reports made by the schools and strategies chosen by the other students.
More importantly, if a mechanism is sequentially manipulable by schools, it is
not a dominant strategy for schools to submit their true preferences and/or
capacities. While this definition is not standard, it captures the notion that
schools can manipulate the sequential Boston mechanism even if students re-
act in a rational way to their manipulations.5 The definitions of sequen-
tially manipulable by declaring students unacceptable, sequentially
manipulable by a ranking change and sequentially manipulable via
capacities are straightforwardly derived from the ones for the simultaneous
game.

Definition 4. A profile
´

fI , P̃S , q̃
¯

is a subgame perfect Nash equilib-
rium (SPNE) of a mechanism Ψ under pPI , PS , qq if the following conditions
hold:

(i) for all s P S, q̃s ď qs, P̂s P Ps and q̂s ď qs we have:

Ψ
´

fI

´

P̃S , q̃
¯

, P̃S , q̃
¯

RsΨ
´

fI

´´

P̂s, P̃´s

¯

, pq̂s, q̃´sq
¯

,
´

P̂s, P̃´s

¯

, pq̂s, q̃´sq
¯

(ii) for all i P I, for all P̂S P PS , for all s P S, q̂s ď qs and for all f̂i P Fi we
have:

Ψ
´

fI

´

P̂S , q̂
¯

, P̂S , q̂
¯

RiΨ
´´

f̂i

´

P̂S , q̂
¯

, f´i

´

P̂S , q̂
¯¯

, P̂S , q̂
¯

would gain by deviating from truth-telling. In our view, such strategies for the students can
be considered “unreasonable.”

5 The idea behind this definition is not that it is a property that is necessarily of independent interest.
Rather it is a definition that allows us to precisely discuss how the Boston mechanism may
give schools an incentive to misrepresent their preferences if students observe the schools’
reports before submitting theirs.
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Notice that one can use the assumption of sequential rationality without
considering the SPNE of the game. As we will show in section 4, that assump-
tion allows for a more meaningful analysis of the incentives that the mechanism
induces in the schools.

We focus here on one particular mechanism, which was used in the Boston
Public School Match before it was changed to the student-proposing deferred
acceptance mechanism of Gale and Shapley (1962) in 2005 (Abdulkadiroğlu,
Pathak, Roth and Sönmez, 2005a). Many other cities have used similar mech-
anisms to allocate school seats to students.

The Boston mechanism: Each student and school reports a preference
order over each other and the option of being unmatched. Schools additionally
report their capacities. Students and schools are matched in rounds.
– Round 1: Each student applies to the highest-ranked school according

to the reported preference order. Each school accepts the students who
applied to it in order of their ranking according to the preference order
reported by the school until there are either no more students who applied
to the school or the school reaches its capacity. Students whose applications
are unsuccessful are rejected.

– Round k ě 2: Each student who was rejected in round k ´ 1 applies to
her k highest-ranked school if it is acceptable to the student. Otherwise the
student is assigned to the outside option. Each school with remaining spots
accepts students who applied to it in round k in order of their ranking
according to the preference order reported by the school until there are
either no more students who applied or the school has reached its capacity.
Students whose applications are unsuccessful are rejected.

The procedure ends when all students are either assigned a spot at a school
or the outside option.

The Boston mechanism as described above will be referred to as the two-
sided simultaneous Boston mechanism. The reason is that both sides of
the market, students and schools, are taken as strategic agents who report
preferences simultaneously. A commonly analyzed variant is the one-sided
Boston mechanism in which only the students are seen as strategic agents
and the schools’ preferences and capacities are seen as administrative rankings
which are simply observed or directly chosen by the market designer. We
further consider the two-sided sequential Boston mechanism, which only
differs from the two-sided simultaneous Boston mechanism in that students
observe the preferences and capacities reported by the schools before reporting
their own preferences. It is often more realistic to suppose that schools move
first in school choice mechanisms since schools’ preferences are often set in
advance and communicated to prospective applicants. For example, a school
could indicate that it accepts students according to their residence location or
a specified weighted average of the students’ grades in an exam. Since we are
concerned with the strategic behavior of schools under the Boston mechanism,
we focus on the two-sided variants of the Boston mechanism, although we will
make use of some existing results of the one-sided Boston mechanism.
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In a setting in which schools are restricted to reporting preferences such
that every student is acceptable,6 Ergin and Sönmez (2006) prove the following
results:

Theorem. (Theorem 2 in Ergin and Sönmez, 2006) In the two-sided
(simultaneous) version of the Boston mechanism, it is a dominant strategy
for any school s to rank students based on its true preferences Ps. Moreover,
any other dominant strategy of school s is outcome equivalent to truthfully
ranking students based on Ps.

Theorem. (Theorem 1 in Ergin and Sönmez, 2006) Let PI be the list of
true student preferences, and consider the preference revelation game induced
by the (one-sided) Boston mechanism. The set of Nash equilibrium outcomes
of this game is equal to the set of stable matchings under the true preferences
PI .

Corollary. (Corollary 1 in Ergin and Sönmez, 2006) In the two-sided
version (simultaneous) of the Boston mechanism, the set of Nash equilibrium
outcomes in undominated strategies is equal to the set of stable matchings
under the true preferences.

In the next section we show that if schools are allowed to declare students
as being unacceptable, the result in Theorem 2 in Ergin and Sönmez, 2006
no longer holds. Combining the results from Theorem 2 and 1 in Ergin and
Sönmez, 2006 leads to their Corollary 1. Our results show that there may
be Nash equilibria in undominated strategies of the two-sided simultaneous
Boston mechanism that are not stable. However, it is still possible to support
each stable matching with some Nash equilibrium in undominated strategies.

3 The Two-Sided Simultaneous Boston Mechanism

First, we show that schools may improve the set of students who are matched
to them by declaring some students unacceptable:

Proposition 1. The simultaneous two-sided Boston mechanism is manipula-
ble by declaring students unacceptable.

Proof Consider the following two-sided matching market:

I “ ti1, i2, i3u S “ ts1, s2u , q1 “ q2 “ 1
Pi1 : s2 s1 Ps1 : i1 i2 i3
Pi2 : s1 s2 Ps2 : i3 i1 i2
Pi3 : s2 s1

The outcome of the Boston mechanism when students and schools submit
their preferences (and capacities) truthfully is µ:

6 This rules out manipulating by declaring students unacceptable.



Strategic Schools under the Boston Mechanism Revisited 11

µ “

ˆ

s1 s2 H
i2 i3 i1

˙

If school s1 submits the preference P 1s1 : i1 i3 and the same capacity, while
the strategies of the other agents remain unchanged, the outcome of the Boston
mechanism is µ1:

µ1 “

ˆ

s1 s2 H
i1 i3 i2

˙

Since s1 prefers student i1 to i2, school s1 gains from the manipulation.

The rationale behind the manipulation of school s1 is as follows. In the
first round of the Boston mechanism only student i2 applies to it. However,
in the next round there will be an application by student i1, who school s1
prefers to i2. By declaring i2 unacceptable school s1 can prevent student i2
from taking its only seat and can then accept student i1 in the second round.

Manipulating by declaring some students unacceptable appears to have
been featured in some real-life markets. Consider, for example, the school
assignment procedure used in New York City before the change to the student-
proposing deferred acceptance mechanism of Gale and Shapley (1962) in 2003.
Before the change, there was no central authority coordinating the assignment.
Strictly speaking, there was no use of the Boston mechanism in New York.
However, the procedure used is roughly comparable to the Boston mechanism.
Students could send a letter to up to five schools in the first round. Schools,
upon receiving an application could decide whether to accept the student, put
her on a waiting list or reject the student (Abdulkadiroğlu, Pathak and Roth,
2005b). After the change to a new mechanism it was reported that: “Before
you might have a situation where a school was going to take 100 new children
for ninth grade, they might have declared only 40 seats, and then placed the
other 60 outside of the process” (New York Times, November 19, 2004). While
it may appear as though schools may have manipulated capacities, this is not
the case.7 By declaring only 40 seats and then filling another 60 seats at a
later stage, the schools effectively declared some students as unacceptable.
Furthermore, the type of manipulation that has occurred suggests that the
incentives to manipulate that we identified in Proposition 1 are of empirical
relevance and importance. This suggests that the incentive to strategically
withhold seats in order to accept more preferred applicants at a later stage,
which we have identified under the Boston mechanism, is practically relevant.
Another method by which schools could declare students as unacceptable is by
setting grade thresholds below which students are not accepted or by setting
other admission requirements. Both of these manipulations may be argued to
be due to an objective necessity of students satisfying such requirements.

7 When manipulating capacities, a mechanism cannot assign more students to a school than its
stated capacities. In New York schools clearly received more students than was possible in
their initially declared capacity quota.
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3.1 Undominated Strategies

Before we analyze the equilibria of the simultaneous move game induced by the
Boston mechanism we describe the undominated strategies of this game. The
reason for our focus on undominated strategies is that this game, like most two-
sided matching games, has many Nash equilibria. For example, every student
and school declaring the option of being unmatched as the most preferred
is always a Nash equilibrium, irrespective of preferences and capacities. Such
equilibria are not reasonable, so we will additionally require that both students
and schools play undominated strategies. Reporting that being unmatched is
the most-preferred outcome is clearly a dominated strategy for any underlying
preferences that have at least one acceptable school or student, respectively.
Thus, the focus on undominated strategies ensures that very unreasonable
Nash equilibria will be ruled out. We begin by showing some properties of the
set of undominated strategies for schools.

Lemma 1. Under the two-sided simultaneous Boston mechanism, the strat-
egy pP̃s, q̃sq is an undominated strategy for school s with true preferences and
capacity pPs, qsq if and only if the following conditions hold:

(i) iP̃sH only if iPsH.
(ii) q̃s “ qs.
(iii) If i, jP̃sH then iP̃sj ô iPsj.
(iv) If i is the most-preferred student under Ps, then iP̃sH.
(v) There are at least qs acceptable students under P̃s.

Strategies that satisfy conditions (i), (ii) and (iii) are denoted dropping strate-
gies in Kojima and Pathak (2009). Lemma 1 says that undominated strategies
by the schools may involve declaring some students unacceptable, but always
being truthful about the relative ranking of acceptable students and never
dropping the most-preferred student. In the proof, which can be found in the
appendix, we see that a strategy of a school which reports an incorrect (with
respect to the true preferences) relative ranking over two acceptable students is
dominated by truthfully ranking them. This implies that ranking changes as a
manipulation strategy are dominated by truth-telling. Undominated strategies
also involve declaring at least qs students as acceptable, which is a consequence
of the assumption that qs ď n.

Undominated strategies also involve no capacity manipulation. Any strat-
egy that involves capacity manipulation is dominated by keeping the reported
preferences the same, while being truthful about capacities. Hence, we have
the following corollary:

Corollary 1. The two-sided simultaneous Boston mechanism is not manip-
ulable via capacities. The two-sided simultaneous Boston mechanism is not
manipulable via ranking changes.

The intuition behind these results is similar to that behind Theorem 1 in
Ergin and Sönmez (2006). By reporting a capacity below the true capacity,
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a school will still receive the same sequence of applications but it can accept
only a subset of the applicants. Therefore, there is no opportunity to gain from
pretending to have a smaller capacity. By changing the reported preferences
over students, schools may sometimes obtain a set of students that are worse
than those they would have received under truth-telling. One consequence of
this is that if the schools can only manipulate by a ranking change then the
set of Nash equilibrium outcomes in undominated strategies of the two-sided
simultaneous Boston mechanism will equal the set of stable matchings.

Since a school’s true preferences satisfy conditions (i)-(v) of Lemma 1,
truth-telling is an undominated strategy for the schools.

Corollary 2. Under the two-sided simultaneous Boston mechanism, truth-
telling is an undominated strategy for schools.

We next characterize undominated strategies for the students.

Lemma 2. Under the two-sided simultaneous Boston mechanism P̃i is an
undominated strategy for student i with true preferences Pi if and only if for
all schools s we have sPiHô sP̃iH.

The Lemma above implies that for some given preferences of some student
i, any other reported preference that has the same set of acceptable schools, is
an undominated strategy. This implies that the set of undominated strategies
for two students with different preferences is the same if and only if both con-
sider the same set of schools acceptable. Like for schools, the true preferences
satisfy the condition in Lemma 2, so we have the following corollary.

Corollary 3. Under the two-sided simultaneous Boston mechanism, truth-
telling is an undominated strategy for students.

The type of undominated strategy differs for students and schools. Stu-
dents’ undominated strategies can be described as being all strategies that are
truthful about which schools are acceptable, but perhaps untruthful about the
relative preference for acceptable students. In contrast, undominated strategies
for the schools involve being truthful about the relative preferences for stu-
dents that are declared acceptable. However, schools’ undominated strategies
may involve not being truthful about which students are acceptable.

3.2 Nash Equilibria in Undominated Strategies under the Two-Sided
Simultaneous Boston Mechanism

Before analyzing the properties of Nash equilibria in undominated strategies,
we show that under the two-sided simultaneous Boston mechanism, such equi-
libria always exist.

Theorem 1. For every stable matching µ, the game induced by the two-sided
simultaneous Boston mechanism has a pure strategy Nash equilibrium in un-
dominated strategies with outcome µ.
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Theorem 1 shows that some flavors of the Theorem 1 in Ergin and Sönmez
(2006) remain in our setting, since every stable matching can be supported as
a Nash equilibrium in undominated strategies under the two-sided simultane-
ous Boston mechanism. However, the reverse does not hold: there exist Nash
equilibria in undominated strategies that are not stable.

Theorem 2. The set of Nash equilibrium outcomes in undominated strategies
of the game induced by the two-sided simultaneous Boston mechanism may
contain unstable matchings. Moreover, the resulting equilibrium outcome may
by weakly preferred to all stable matchings by the schools.

Proof Consider the following two-sided matching market:

I “ ti1, i2, i3, i4u S “ ts1, s2, s3u , q1 “ 2, q2 “ q3 “ 1

Pi1 : s2 s1 s3 Ps1 : i1 i2 i3 i4

Pi2 : s1 s2 Ps2 : i2 i1 i3

Pi3 : s2 s3 s1 Ps3 : i4 i1 i3

Pi4 : s1 s3

The strategy profile pP̃I , P̃S , p2, 1, 1qq is a Nash equilibrium, where:

P̃i1 : s2 s1 s3 P̃s1 : i1 i3

P̃i2 : s2 s1 P̃s2 : i2 i1 i3

P̃i3 : s2 s3 s1 P̃s3 : i4 i1 i3

P̃i4 : s3 s1

The outcome in this Nash equilibrium under the Boston mechanism is the
matching µ:

µ “

ˆ

s1 s2 s3
i1,i3 i2 i4

˙

To see that this strategy profile is a Nash equilibrium, consider the devia-
tions that schools and students could have:

– Student i1 cannot be accepted by s2 at the first step, since i2 is also apply-
ing there at that step and has a higher ranking. Since there are no other
seats at s2, i1 cannot profitably deviate.

– Student i2 is not acceptable to school s1 under P̃s1 , and therefore cannot
profitably deviate.

– Student i3 cannot be accepted at school s3, since i4 is applying there at
the first step and has higher ranking. She also cannot be accepted at s2,
since she has a lower ranking than i1 and i2, who apply there at the first
step. Therefore, i3 also cannot profitably deviate.
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– Student i4 is not acceptable at school s1, and therefore cannot profitably
deviate.

– School s1 would only be able to be better off if it got students i1 and i2.
Since i2 ranked school s2 first and is accepted in the first step, the report
s1 makes does not affect where i2 is allocated.

– Schools s2 and s3 have their most-preferred students, and so have no in-
centive to deviate.

The matching µ is not stable since school s1 and student i2 form a blocking
pair. To show that µ is weakly preferred to all stable matchings by the schools,
it suffices to show that µ is preferred to the school-optimal stable matching
µS :

µS “

ˆ

s1 s2 s3
i2,i3 i1 i4

˙

Given the schools’ preferences, µ ps1qPs1µS ps1q, µ ps2qPs2µS ps2q and µ ps3qRs3µS ps3q.
From Lemma 1 and Corollary 2 it follows that schools’ strategies are un-

dominated. From Lemma 2 it follows that students’ strategies are undomi-
nated.

While not every Nash equilibrium outcome in undominated strategies of
the two-sided simultaneous Boston mechanism is stable, we can be more precise
about what type of instabilities can appear. The following result shows that
in Nash equilibrium outcomes in undominated strategies under the Boston
mechanism, no unmatched student is part of a blocking pair.

Proposition 2. Let µ be the outcome of a Nash equilibrium pP̃I , P̃S , qq in
undominated strategies under the two-sided simultaneous Boston mechanism.
If some student i is part of a blocking pair of µ under the true preferences and
capacities pPI , PS , qq then µpiq P S.

Proof Take some matching µ that is the outcome of a Nash equilibrium pP̃I , P̃S , qq
in undominated strategies under the two-sided simultaneous Boston mecha-
nism. For a contradiction suppose that student i and school s block µ under
their true preferences and that µpiq “ H. This means that both are acceptable
to each other and either (a) |µpsq| ă qs and iPsH, or (b) |µpsq| “ qs and there
exists j P µpsq such that iPsj.

Suppose that (a) holds. Since µ is the result of a Nash equilibrium in
undominated strategies, from Lemma 2 it follows that P̃i must have declared
s to be acceptable. Because i is not matched to any school under µ, there
is some round of the Boston mechanism in which i applies to school s and
is rejected. From Lemma 1 it follows that s truthfully stated its capacities,
so that i could only have been rejected by s if HP̃si. However, since s does
not fill its capacity, this implies that declaring i as acceptable is a profitable
deviation. This contradicts pP̃I , P̃S , qq being a Nash equilibrium. So condition
(a) cannot hold.

Suppose that (b) holds. If iP̃sH there is a contradiction. Since i is accept-
able under P̃s and since undominated strategies satisfy iP̃sj ô iPsj if i, jP̃sH
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(Lemma 1), i can profitably deviate by ranking s first. This is because either
fewer than qs students apply to schools s in the first round of Boston or be-
cause there is some student j that applies in the first round such that iP̃sj
by condition (b). If HP̃si holds then we can construct a strategy P 1s, which
differs from P̃s in that it declares i acceptable but not some j P µpsq such
that iPsj. The resulting outcome of the Boston mechanism for school s is then
tµpsqzjuY i, since i declares s acceptable under P̃i and is unmatched under µ.
Hence, school s has a profitable deviation, which is a contradiction.

One key result of the theory of two-sided matchings is that every stable
matching has the same set of students who are unassigned.8 The proof of The-
orem 2 involved an example in which the same set of students are matched in
the Nash equilibrium in undominated strategies under the Boston mechanism
and in the stable matchings. This might suggest some connection between the
number of students who are matched in different Nash equilibria in undomi-
nated strategies. However, this is not the case, as we show below.

Proposition 3. The outcome of a Nash equilibrium pP̃I , P̃S , qq in undomi-
nated strategies under the two-sided simultaneous Boston mechanism and true
preferences and capacities pPI , PS , qq may match fewer or more students to
schools than any matching that is stable under the true preferences.

4 The Sequential Boston Mechanism

In many school choice applications, students who apply to schools are aware
of how schools’ rankings over students are formed. For example, in Boston
it was well-known that students with a sibling attending a school are given
higher ranking. The analysis so far has assumed that both students and schools
report their preferences simultaneously. We now consider the case in which
schools first submit their preferences over students and their capacities, and
second, students submit their preferences over schools after having observed
the schools’ reported preferences and capacities. This allows students to re-
port different preferences depending on the observed rankings reported by the
schools.

Students’ strategies can depend on the schools’ reported preferences in
arbitrary ways. For example, a student i could report some school s as unac-
ceptable unless that school ranks student i first. If school s ranks i first then
i reports that s is the most-preferred school. Given this strategy for student
i, school s would have an incentive to rank i first in some circumstances, irre-
spective of whether student i really is the most-preferred student of school s.
This strategy of student i does not seems reasonable, and would allow schools
to successfully manipulate the Boston mechanism based solely on unrealistic
actions taken by the students. In order to obtain more robust and realistic
results on the incentives induced by the Sequential Boston mechanism, we

8 This is the famous Rural Hospitals Theorem of Roth (1986).
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restrict our analysis to sequentially rational strategies for the students. This
requires them to report their preferences optimally, given the schools’ reported
preferences and capacities as well as the other students’ reported preferences.
The following lemma shows that sequentially rational strategies for the stu-
dents have strong implications for the outcomes that the Boston mechanism
produces.

Lemma 3. Let f “ pfi1 , . . . , finq be the sequentially rational strategies of the
students with true preferences PI . Then for all pP̃S , q̃q, the outcome of the
sequential Boston mechanism, ΨBOS

´

fpP̃S , q̃q, pPS , q̃
¯

, is stable with respect

to PI and pP̃S , q̃q.

Proof The result is a Corollary of Theorem 1 of Ergin and Sönmez (2006),
who showed that, given schools’ preferences and capacities, the set of Nash
equilibria of the game induced by the Boston mechanism for the students is
equivalent to the set of stable matchings.

Lemma 3 substantially simplifies the analysis of the sequential Boston
mechanism. Instead of having to directly specify strategies for the students, we
can use the fact that any equilibrium strategy of the students has to produce
an outcome under the Boston mechanism that is stable with respect to the
schools’ reported preferences and capacities and the students’ true preferences.

The following proposition shows that the schools can manipulate the se-
quential Boston mechanism without having to declare a student unacceptable.
This implies that the non-manipulability of the Boston mechanism requires
both that schools cannot declare students unacceptable and that the prefer-
ences and capacities of the schools and students’ preferences are submitted
simultaneously.

Proposition 4. The two-sided sequential Boston mechanism is sequentially
manipulable by ranking changes.

Proof By Lemma 3, every outcome of the sequential Boston mechanism with
sequentially rational strategies for the students yields an outcome that is stable
with respect to schools’ reported preferences and capacities and students’ true
preferences. Hence, we need to find preferences of the students PI , schools’ true
preferences and capacities pPS , qq, and a school s with reported preferences P̃s,
with P̃s ‰ Ps and iPsHô iP̃sH, such that some matching that is stable with
respect to pPI , pP̃s, P´sq, qq is preferred by s to a matching that is stable with
respect to pPI , PS , qq.

Consider the following two-sided matching market:

I “ ti1, i2, i3, i4, i5u S “ ts1, s2, s3u , q1 “ 3, q2 “ q3 “ 1
Pi1 : s2 s1 s3 Ps1 : i1 i2 i3 i4 i5

Pi2 ´ Pi5 : s1 s2 s3 Ps2 : i3 i2 i1 i4 i5
Ps3 : i1 i2 i3 i4 i5
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Consider the matching µ:

µ “

ˆ

s1 s2 s3
i2,i3, i4 i1 i5

˙

The matching µ is the schools’ optimal stable matching and the students’
optimal stable matching, and is therefore the unique stable matching. Con-
sider the following deviation by school s1: it reports the same capacity and
P 1s1 : i1 i2 i4 i5 i3 in the first stage of the sequential Boston mechanism
while the other schools report their preferences truthfully. Then the unique
stable matching with respect to the schools’ reported preferences and the stu-
dents’ true preferences (and therefore the unique equilibrium outcome of that
subgame) is µ1:

µ1 “

ˆ

s1 s2 s3
i1,i2, i4 i3 i5

˙

School s1 therefore receives students µ1ps1q “ ti1, i2, i4u with the deviation,
which is a set of students strictly preferred to µps1q “ ti2, i3, i4u for any
responsive preferences consistent with the true preferences of school s1 over
the students.

Ergin and Sönmez (2006) have shown that if schools rank all students
truthfully then the set of Nash equilibrium outcomes in undominated strate-
gies under the two-sided simultaneous Boston mechanism is equal to the set
of stable matchings when schools have no unacceptable students. This leaves
open the possibility of unstable equilibrium outcomes which are supported by
schools not reporting their preferences truthfully. The result in Proposition
4 shows that when submitting their preferences before the students, manip-
ulations that do not involve declaring some students unacceptable may be
profitable for schools. The reason is that by changing their reports, schools
can affect the students’ reported preferences. In the example used to prove
Proposition 4 school s1, by letting student i3 be the least-preferred acceptable
student, effectively induces some students to apply to school s2 first. This leads
student i1 to apply first to school s1, as otherwise s1 would be unable to be
matched to school s1.

Theorem 3. The set of subgame perfect Nash equilibrium outcomes of the
sequential Boston mechanism may contain matchings that are not stable with
respect to students’ true preferences and schools’ true preferences and capaci-
ties. Moreover, the resulting equilibrium may be weakly preferred by all schools
to all stable matchings.

Proof Consider the example used to prove Proposition 4 and the matching µ1
in that proposition’s proof, that results when s1 reports P 1s1 : i1 i2 i4 i5 i3
and the other schools report their preferences truthfully:

µ1 “

ˆ

s1 s2 s3
i1,i2, i4 i3 i5

˙
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We show that there exists an SPNE in which schools report
`

pP 1s1 , Ps2 , Ps3q, p3, 1, 1q
˘

.
To do this, we use Lemma 3, which implies that the SPNE strategies of the
students are such that the outcome of the sequential Boston mechanism is
stable with respect to the schools’ reported preferences and capacities and the
students’ true preferences, both for the equilibrium strategies of the schools as
well as for schools’ deviations from the SPNE strategies. Hence, it is sufficient
to show that no matching that is stable with respect to students’ true prefer-
ences, the other schools’ reported preferences and capacities, and some school’s
deviation from the SPNE strategies is preferred to some matching that is stable
with respect to

`

pP 1s1 , Ps2 , Ps3q, p3, 1, 1q
˘

and students’ true preferences.
School s2 gets its most-preferred student i3 and therefore cannot gain

by any deviation. School s3 is the least liked by all the students. Suppose
that for some other reported preference profile school s3 obtains a student
i P ti1, i2, i3, i4u. If i “ i3, then i and s2 constitute a blocking pair. If
i P ti1, i2, i4u then i and school s1 constitute a blocking pair because i is
among the three most-preferred students of s1 according to P 1s1 . Therefore, it
cannot be a continuation equilibrium for s3 to obtain a student other than
i5 irrespective of the report submitted by s3. Thus, s3 has no incentive to
deviate. Lastly, consider the incentives of school s1 to deviate. To gain from a
deviation s1 needs to be matched to students ti1, i2, i3u. Suppose that there is
some report pP̃s1 , q̃s1q that yields this outcome for s1 while the other schools
report truthfully. Since the outcome must be stable with respect to students’
true preferences and ppP̃s1 , Ps2 , Ps3q, pq̃s1 , 1, 1qq, in a continuation equilibrium
yielding this outcome for s1 we would need i4 to be matched to s2 and i5 to s3.
Otherwise pi4, s2q would be a blocking pair. However, in this case pi1, s2q is a
blocking pair. The outcome is thus unstable. Hence there is a contradiction if
school s1 could profitably deviate from P 1s1 . It follows that s1 also cannot gain
by a deviation. Therefore, µ1 is a subgame perfect Nash equilibrium outcome
of the sequential Boston mechanism.

It remains to show that µ1 is not stable with respect to schools’ true pref-
erences and capacities and students’ true preferences. The pair pi3, s1q block
the matching µ1, since s1Pi3µ1pi3q “ s2 , i4 P µ1ps1q and i3Ps1i4. Finally, since
schools s1 and s2 strictly prefer µ1 over µ (which is the unique stable matching
with respect to the true preferences) and school s3 is indifferent between them,
µ1 is weakly preferred by all schools over all stable matchings.

In our proof we relied on the fact that the set of Nash equilibrium out-
comes in undominated strategies of the one-sided Boston mechanism is the
set of stable matchings with respect to students’ true preferences. Even the
student-proposing deferred acceptance mechanism (Gale and Shapley, 1962)
has equilibria in undominated strategies that are not stable (Roth and So-
tomayor, 1990) when schools report preferences truthfully. In other words,
while the Boston mechanism implements the set of stable matchings in un-
dominated strategies, that is not the case for the student-proposing deferred
acceptance mechanism and so the incentives that schools have under the latter
does not necessarily translate into incentives in the former.
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One feature of the preference relation P 1s1 that we use in the proofs of
Proposition 4 and Theorem 3 is that it does not declare any student unaccept-
able. For the simultaneous Boston mechanism Ergin and Sönmez (2006) show
that such manipulations cannot yield a better outcome for the schools. What
our result highlights is that the timing of preference submission is a critical
assumption in that result. The manipulability of the sequential Boston mecha-
nism by declaring a student unacceptable and the instability of its equilibrium
outcome can be shown by following the same steps of the proofs of Proposition
4 and Theorem 3 by school s1 declaring student i3 to be unacceptable.

Remark 1. The two-sided sequential Boston mechanism is sequentially ma-
nipulable by declaring students unacceptable. Moreover, the set of subgame
perfect Nash equilibrium outcomes may contain matchings that are not stable
with respect to students’ true preferences and schools’ true preferences and
capacities.

If we consider the case in which students submit their preferences before
the schools, Theorem 2 in Ergin and Sönmez, 2006 implies that schools will
not have any incentive to misrepresent their preferences. Therefore, students
will play the preference revelation game induced by the one-sided version of
the Boston mechanism and the corresponding results in Ergin and Sönmez,
2006, hold.

Remark 2. If under the Boston mechanism students submit their preferences
first and schools submit theirs afterward, the set of subgame perfect Nash equi-
libria outcomes equals the set of stable matchings under the true preferences,
when all students are required to be acceptable by all schools.

For the two-sided simultaneous Boston mechanism we have shown that
schools do not have an incentive to manipulate their capacities. We now show
that this result also depends on the timing of the game. Specifically, when
schools report their capacities before students report their preferences (and
capacities are observable by the students) then schools may have an incentive
to manipulate their capacities.

Proposition 5. The two-sided sequential Boston mechanism is sequentially
manipulable via capacities.

Proof Consider the following example, where preferences for both schools are
responsive.9

I “ ti1, i2, i3, i4u S “ ts1, s2u , q1 “ 3, q2 “ 2
Pi1 : s2 s1 Ps1 : ti1, i2, i3u ti1, i2u ti1, i3u ti1u ti2, i3u ti2u ti3u ti4u
Pi2 : s1 s2 Ps2 : i4 i3 i2 i1
Pi3 : s1 s2
Pi4 : s2 s1

9 For this example it is not necessary to specify the preferences of school s2 beyond its ranking over
singleton sets of students.



Strategic Schools under the Boston Mechanism Revisited 21

For school s1 we have only shown preferences that are relevant to our analy-
sis (that is, we do not show how the preferences of school s1 over sets including
student i4 are). We assume that schools’ reported preferences are fixed. Given
the schools’ reported preferences and capacities, and by sequential rational-
ity and Lemma 3, the outcome of the subgame played by the students after
schools report their capacities is stable with respect to their true preferences
and the schools’ reported preferences and capacities. Hence, it is sufficient to
consider the resulting set of stable matchings for each possible combination of
capacities reported by the schools. When the reported capacities are p3, 2q it
is easy to verify that the unique stable matching is given by:

µ “

ˆ

s1 s2
i2,i3 i1, i4

˙

When the reported capacities are p1, 2q the unique stable matching is given
by:

µ̂ “

ˆ

s1 s2
i1 i3, i4

˙

Since ti1uPs1ti2, i3u, school s1 gains from understating its capacity by 2.

Unlike in the simultaneous Boston mechanism, schools may have incentives
to misstate their capacities in the sequential Boston mechanism. The intuition
is similar to preference manipulations of the sequential Boston mechanism: by
misstating its capacities, a school may change the set of stable matchings.

The next theorem considers the game induced by the sequential Boston
mechanism when schools’ only strategic variable is their reported capacity.

Theorem 4. Holding schools’ submitted preferences fixed, the set of SPNE
outcomes of the sequential Boston mechanism may have no stable matching
when schools are only able to manipulate their capacities. Moreover, all SPNE
outcomes may be strictly preferred by the schools over all stable matchings.

Proof Consider the example in the proof of Proposition 5. The only stable
matching, under true capacities, is µ:

µ “

ˆ

s1 s2
i2,i3 i1, i4

˙

Clearly, the profile p3, 1q cannot be part of an SPNE strategy profile, since
school s2 would only obtain student s4, which is worse than the outcome under
p3, 2q. If schools report p1, 2q, instead, the SPNE outcome is unique and is given
by:

µ̂ “

ˆ

s1 s2
i1 i3, i4

˙

which is preferred by both schools to µ and for school s2 is its most-
preferred set of students. Therefore, p3, 2q is not part of an SPNE strategy
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profile. Moreover, it follows that p1, 1q is not part of an SPNE strategy profile,
as s2 would prefer to state its capacity truthfully. Consider next what hap-
pens when the reported capacities are p2, 2q. In that case there are two stable
matchings (and thus two possible subgame perfect continuation outcomes).
These are µ and µ̃:

µ̃ “

ˆ

s1 s2
i1, i2, i3, i4

˙

Note that under µ̃ both schools get their most-preferred set of two students,
while µ is the unique stable outcome with respect to true preferences. There
are two equilibrium outcomes for the subgame after the reported capacities
p2, 2q. When µ is the outcome then p2, 2q is not part of an SPNE strategy
profile, since school s1 prefers the outcome of p1, 2q to µ, which it can reach by
deviating. If instead the outcome is µ̃, then p2, 2q is part of an SPNE strategy
profile. Lastly, p2, 1q is not part of an SPNE strategy profile, since s2 only
obtains student s4, which is worse than the outcome under p2, 2q, irrespective
of the following equilibrium outcome.

Finally, note that the two possible equilibrium outcomes, µ̃ and µ̂, are
strictly preferred by both schools over the unique stable matching µ.

The proof of Theorem 4 shows that there are situations in which no stable
matching is supported by a subgame perfect Nash equilibrium when schools
can misrepresent their capacities, but not their preferences. By misstating their
capacities, schools can obtain an outcome that all of them strictly prefer to the
stable matching. The restriction that schools can only manipulate capacities
has bite in the example used above: if school s1 reports that only students i2
and i3 are acceptable, while s2 reports that only i1 and i4 are acceptable, the
outcome of the continuation game then leads to the stable matching µ. Neither
s1 nor s2 can gain by deviating, since µ is the only matching that is stable
with respect to those reported preferences and students’ true preferences. This
argument can be generalized:

Theorem 5. For every stable matching µ, the game induced by the two-sided
sequential Boston mechanism has a pure strategy subgame perfect Nash equi-
librium with outcome µ.

Proof Fix a stable matching µ. Let each school report pP̃s, qsq such that iP̃sH
if and only if i P µpsq. Then any continuation subgame will be such that each
student i reports µpiq as an acceptable school, so the outcome will be µ. There
are many such strategies, all with the same outcome. Students cannot gain by
deviating: for each student i, there is only one school that reported i to be
acceptable. That school is µpiq. Hence, declaring µpiq a unacceptable, results
in student i being unassigned.

The schools cannot gain by deviating. Suppose some school s, reported
pP 1s, q

1
sq instead and obtained a better outcome. Let the outcome of the sub-

game that results when s deviates and all other schools continue to report
pP̃´s, q´sq be µ1. If the school obtained an outcome, say µ1psq that it prefers
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over µpsq, then any student i P µ1psq must weakly prefer s to µpiq. Otherwise,
in the subgame i could obtain µpiq by ranking it first. However, this contradicts
µ being stable since school s and the students in µ1psq constitute a blocking
pair.
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Appendix

Proof of Lemma 1

Necessity of the conditions.
Suppose that a strategy P̃s is undominated. We will show that if each of

the conditions above fail, there is a strategy that dominates P̃s.
For (i), suppose that there is some student i such that iP̃sH and HPsi.

Consider a strategy pP 1s, q̃sq where P 1s is the same as P̃s except that for every
student j such thatHPsj we makeHP 1sj (including i). Under the simultaneous
Boston mechanism, a school can’t change the set of students who apply to that
school in each period. As a result, under P 1s, the set of acceptable students who
are matched to s under P̃s will still be matched to s under P 1s, but if some
unacceptable student is matched to s under P̃s, she will be replaced by either
an acceptable student or an empty seat. By responsiveness, both cases are
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preferred by s to being matched with some unacceptable student. Therefore,
P 1s dominates P̃s.

For (ii), suppose q̃s ă qs and consider a strategy pP̃s, qsq. For given pref-
erences and capacities of the other schools and for given preferences of the
students, each round of the Boston mechanism will proceed identically under
pP̃s, q̃sq and pP̃s, qsq until the capacity constraint q̃s starts to bind, say in round
t. This means that in round t there are more students applying to school s
than the remaining capacity. However, since qs ą q̃s under pP̃s, qsq not only
will the same set of students be accepted as under pP̃s, q̃sq but, in addition,
some more students will be accepted. Since preferences are responsive and
since P̃s lists as acceptable only those students that are acceptable under Ps,
it follows that the outcome of the Boston mechanism under pP̃s, qsq is weakly
preferred to the outcome under pP̃s, q̃sq. Hence, only strategies with q̃s “ qs
can be undominated.

For (iii), consider two students, i, j such that i, jP̃sH, iPsj and jP̃si. Con-
sider the strategy pP 1s, q̃sq where P 1s is such that kP̃sH ô kP 1sH and for all
k, k1P 1sH we have kP 1sk1 ô kPsk

1. Since under pP̃s, q̃sq and pP 1s, q̃sq the same
set of students is acceptable, each round of the Boston mechanism is equiv-
alent under both strategies unless in some round there are more acceptable
applicants than available capacity, for given preferences and capacities of other
schools and preferences of the students. Because capacities are the same, this
is the same round under both strategies. In that round the preferences over
the student determine which students will be accepted. Under pP 1s, q̃sq the best
students according to Ps will be accepted. This is not the case under pP̃s, q̃sq.
Thus school s strictly prefers the outcome under pP 1s, q̃sq to the outcome un-
der pP̃s, q̃sq whenever cases arise in which both i and j apply in the same
round, but only j is accepted under pP̃s, q̃sq. Otherwise the outcome under
both strategies is the same. Hence, pP̃s, q̃sq is dominated by pP 1s, q̃sq, which is
a contradiction.

For (iv), let i be the most-preferred student under Ps but HP̃si. We con-
struct a strategy for school s, pP 1s, q̃sq that dominates pP̃s, q̃sq. Let P 1s be the
same as P̃s except that i is now the most-preferred acceptable student. For
given preferences and capacities of the other school and preferences of the
students, each round of the Boston mechanism will proceed identically under
both strategies until student i applies to school s. In that round, if school s still
has available capacity, i will be rejected under pP̃s, q̃sq but not under pP 1s, q̃sq
and otherwise the outcome under both strategies is the same. The rejection of
i under pP̃s, q̃sq can at most lead to one additional application from an accept-
able student, with other applications being the same in each subsequent round.
This additional application occurs when student i in later rounds is matched
to some other school s1 and thereby prevents another student i1 from being
matched there and i1 likewise prevents another student from being matched
to some other school. This sequence of rejections either ends with one student
being matched to a school whose capacity constraint under the Boston mecha-
nism and pP 1s, q̃sq is not binding (this includes being left unmatched) or it ends
with some student i2 applying to school s. If i2 is not acceptable, the sequence



Strategic Schools under the Boston Mechanism Revisited 27

of rejections continues until it either ends or some other student applies to s.
If s accepts i2 then the assignment under both strategies will differ by only a
single agent. But since i is the most-preferred student under Ps, the outcome
under pP 1s, q̃sq is preferred by s. Hence, pP̃s, q̃sq is dominated by pP 1s, q̃sq, which
is a contradiction.

For (v), let there be only l ă qs acceptable students under pP̃s, qsq. Con-
struct pP 1s, qsq such that it is the same as pP̃s, qsq except that one additional
student i, who is acceptable under Ps is acceptable under it. This is possible
since we assumed that at least qs students are acceptable under each school’s
true preferences. Since only l students under P̃s are acceptable, the capacity
constraint will never bind in any round of the Boston mechanism under ei-
ther pP 1s, qsq or pP̃s, qsq for any given preferences and capacities of the other
schools and preferences of the students. This means that for both strategies
any application by the l students, that are acceptable under pP̃s, qsq, will be
accepted. In addition, under pP 1s, qsq student i can also be accepted. Therefore,
pP 1s, qsq never yields a worse outcome than pP̃s, qsq but may sometimes yield
a preferred outcome, evaluated under the true preferences, which contradicts
pP̃s, qsq being undominated.

Sufficiency of the conditions.
Suppose pP̃s, q̃sq satisfies all five conditions, so that we can replace q̃s by

qs. Without loss of generality, any strategy pP 1s, q1sq that is a candidate for
a strategy that dominates pP̃s, qsq also needs to satisfy the five conditions.
Otherwise we could replace it with a strategy that dominates it. So we have
q1s “ qs. Furthermore, whenever two students i, i1 are acceptable under P̃s and
P 1s we must have iP̃si1 ô iP 1si

1, since both satisfy the third condition. Thus,
P 1s can only meaningfully differ from P̃s in terms of the set of students who
are reported to be acceptable.

Suppose first that qs students are acceptable under pP̃s, qsq. Define the
set of students that are acceptable under this strategy to be Ã Ď I. Let
i1 be the most-preferred student under Ps. We then have that i1 P Ã. It
cannot be dominated by another strategy pP 1s, qsq that declares a different
set of qs students acceptable. To see this, suppose that students in Ã, and
only those students, rank school s first. All other students declare s to be
unacceptable. In that case, under strategy pP̃s, qsq the set Ã is accepted, but
only a subset of those students are accepted under pP 1s, qsq, which contradicts
pP 1s, qsq dominating pP̃s, qsq.

Now suppose that pP̃s, qsq with qs acceptable students is dominated by
some other strategy pP 1s, qsq that declares k students acceptable, with qs ă
k ď n. Denote this set of students as A1. We have that Ã Ă A1. Otherwise, let
the students in ÃzA1 be the only ones who consider s acceptable and let them
rank s first. Then pP̃s, qsq yields a better outcome to s than pP 1s, qsq.

Suppose now that a subset of qs ´ 1 students in Ã and another student i1
in A1zÃ rank s first. Suppose further that i1 is the student in Ã who does not
rank s first, but instead ranks another school first, which does not consider i1
acceptable. Furthermore, let s be the second choice of i1. Then the outcome
of the Boston mechanism under pP̃s, qsq differs from that under pP 1s, qsq only
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in that i1 is matched to s in the former, while i1 is matched to s in the latter.
Since i1Psi1, the outcome under pP̃s, qsq is preferred to that under pP 1s, qsq. This
argument can be adapted straightforwardly to show that no strategy pP̃s, qsq
that considers k ě qs students acceptable is dominated by another strategy
pP 1s, qsq that considers k1 ě k students acceptable.

Finally, suppose that k, with n ě k ą qs, students are acceptable un-
der pP̃s, qsq. We will show that pP̃s, qsq cannot be dominated by any strategy
pP 1s, qsq declaring k1 ă k students acceptable. The associated sets of acceptable
students are Ã and A1 as before. Since fewer students are acceptable under
pP 1s, qsq we have ÃzA1 ‰ H. Now suppose all students in ÃzA1 rank school s
first and are the only students to consider i as acceptable. Then up to the qs
most-preferred students will be accepted by s under pP̃s, qsq but no student
will be matched to s under pP 1s, qsq. Thus, pP̃s, qsq cannot be dominated by a
strategypP 1s, qsq that considers fewer students acceptable.

Proof of Lemma 2

Necessity of sPiHô sP̃iH.
For a contradiction suppose that P̃i is an undominated strategy. Suppose

that there exists some student i and school s such that sPiH but HP̃is. Let
preferences P 1i be the same as P̃i except that s is the least-preferred acceptable
school. For all strategies P̃´i, pP̃S , q̃sq of the other agents in which i is matched
to some school under P̃i, the assignment under P 1i has to be the same under
the Boston mechanism, since in each round i applies to the same schools. If i
remains unmatched under P̃i then i also remains unmatched under P 1i , unless
i is accepted by school s when applying to it. Hence, the outcome under both
is the same, unless i is accepted by school s, which cannot happen under P̃i.
One profile of preferences and capacities that has this property is one in which
all schools except s consider i to be unacceptable and school s considers i and
no other student to be acceptable. For this profile of preferences, under P 1i , i is
matched to s, which because sPiH, is strictly preferred to the outcome when
reporting P̃i. Hence P̃i is dominated by P 1i , a contradiction.

For any strategy P̃i that declares a school s with HPis to be acceptable,
one can find preferences for the schools and the other students so that i is
matched to s. For any such preferences, a strategy that is identical to P̃i, but
declares s and any other school s1, with HPis1, to be unacceptable, can at
worst result in i being unmatched. This is preferred to being matched to an
unacceptable school, so P̃i is a dominated strategy, which is a contradiction.

Sufficiency of sPiHô sP̃iH.
To see the result, we need to show that any ordering of acceptable schools

constitutes an undominated strategy. We show first that no strategy P̃i that
ranks some acceptable school s first can be dominated by another strategy
P 1i that ranks another acceptable school s1 first. We assume that both schools
are acceptable under Pi. Suppose that P̃´i is such that qs other students rank
s first, but that i is the most-preferred student according to P̃s. The other
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qs students are acceptable to s. Suppose in addition that no other school,
including s1, considers i to be acceptable. In that case, under P̃i student i
obtains school s. Under P 1i student i remains unmatched. Hence, a strategy
P̃i ranking school s first can only be dominated by a strategy that also ranks
s first.

Suppose that the top k schools, with 2 ď k ă m, under P̃i are ranked
as follows: s1P̃is2 . . . sk´1P̃isk. Suppose that P 1i ‰ P̃i ranks the first k ´ 1
schools the same way, but ranks another acceptable school s1k ‰ sk as the kth
best school. The preferences over the remaining schools under both P̃i and
P 1i are arbitrary. We show that no such P 1i can dominate P̃i. We construct
reported preferences for the other students and strategies for the schools as
follows. Suppose school s reports a capacity of q̃sk “ 1. Let there be one other
student i1 who reports the same preferences over the first k schools as student
i. Let both i and i1 be acceptable to school sk but unacceptable to any school
s1, s2, . . . , sk´1. Let the preferences of other students be such that none of
them apply to school sk until after round k. Furthermore, let iP̃sk i1. Last, we
assume that sk is the only school that considers i to be acceptable.

Under these (incompletely) specified preferences it follows that i is matched
to sk when reporting P̃i but remains unmatched when reporting P 1i . Since sk
is acceptable, it follows that P 1i does not dominate P̃i. Hence, no strategy
is dominated by another strategy that is identical for the first k ´ 1 schools
and deviates thereafter. It also follows that for a given k and s1, s2, . . . , sk,
the strategy P̃i can also not be dominated by any strategy that differs in the
ranking of the k´1 most-preferred schools. It follows that no strategy P̃i that
satisfies for all s P S, sP̃iHô sPiH is dominated by some other strategy that
also satisfies this condition.

Proof of Theorem 1

To prove the theorem, we will propose undominated strategies for the students
and schools and verify that these strategies constitute a Nash equilibrium.
Take some matching µ that is stable with respect to the true preferences and
capacities. For all i P I such that µpiq “ H let i report preferences truthfully.
For all i P I such that µpiq P S let i report school µpiq as the most preferred
and all other acceptable schools arbitrarily ranked below. Let all schools report
preferences truthfully. We will refer to this strategy-profile as pPµI , PS , qq, to
make clear that only students’ strategies depend on the matching µ.

Claim 1: pPµI , PS , qq consists only of undominated strategies.
From Lemma 1 and Corollary 2 it follows that schools’ strategies are un-

dominated. From Lemma 2 it follows that students’ strategies are undomi-
nated.

Claim 2: pPµI , PS , qq is a Nash equilibrium.
If all agents use these strategies, the outcome under the Boston mechanism

is µ. Every student i applying to µpiq will be accepted by the school in the
first round of the Boston mechanism, since µ is stable. Students unmatched
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under µ will be rejected by all schools to which they apply, since if they
were accepted by some school, this would contradict the stability of µ given
that schools are assumed to report preferences truthfully. No school s can
gain from a deviation. Any student applying to a school other than s will be
accepted in the first round, and so cannot be obtained by school s. The only
students that s could obtain under some alternative strategy P̃s are those who
apply to it in the first round and those who are unmatched under µ and who
consider s acceptable. However, since µ is stable, it follows that s prefers µpsq
to obtaining some students who are unmatched under µ and who consider s
acceptable. Hence, s cannot possibly gain from any type of deviation.

No student i who remains unmatched under µ can gain from a deviation.
Since µ is stable and schools report preferences truthfully, any unmatched
student must be less preferred by the schools than the students accepted by
the school in the first round of the Boston mechanism. If a school accepts
some student i who is unmatched under µ, this contradicts the stability of µ.
Similarly, any student i who is matched to a school under µ cannot gain from
a deviation. If such a student ranked another, preferred school s first then that
school would not accept the application. Otherwise, if it accepted, this would
contradict the stability of µ, since s would have chosen i in the first round even
when µpsq was available. If some other strategy resulted in i being matched to
s, then i ranking s first would also do so. Hence, no other deviation can yield
student i being assigned to a school s that is preferred over µpiq. Hence, no
student can gain from a deviation.

Proof of Proposition 3

Fewer students matched under pP̃I , P̃S , qq than in stable matchings.
Consider the following true preferences and capacities:
I “ ti1, i2u S “ ts1, s2u, qs1 “ qs2 “ 1

Pi1 : s1 Ps1 : i2 i1
Pi2 : s2 s1 Ps2 : i1 i2

It can be easily verified that the unique stable matching under the true pref-
erences is tps1, i1q, ps2, i2qu. Consider the following strategy profile (assuming
capacities are reported truthfully):

P̃i1 : s1 P̃s1 : i2 i1

P̃i2 : s1 s2 P̃s2 : i1

Using Lemmas 1 and 2, it follows that pP̃I , P̃S , qq are undominated strate-
gies. The outcome of the Boston mechanism under pP̃I , P̃S , qq is tps1, i2q, ps2,Hq, pH, i1qu,
which leaves i1 unmatched. In contrast, in the stable matching, i1 is matched
to s1.

It remains to show that pP̃I , P̃S , qq constitutes a Nash equilibrium. School
s1 gets its most-preferred outcome, so have no incentive to deviate. Student i2
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is deemed unacceptable by school s2 under P̃s2 , and therefore cannot deviate
and be matched there. Since i2 is matched to s1 in the first round of the Boston
mechanism, there is no report that s2 could make to obtain either i2 or i1.
Similarly, i1 applies to s1 in the first round and is rejected. Student i1 has no
incentive to deviate, since s1 is the only school that is acceptable to i1.

More students matched under pP̃I , P̃S , qq than in stable matchings.
Consider the following true preferences and capacities:

I “ ti1, i2u S “ ts1, s2, s3u , q1 “ 2, q2 “ 1

Pi1 : s1 s2 Ps1 : i1 i2 i3

Pi2 : s1 s2 Ps2 : i1 i2

Pi3 : s1 s2

It can be easily verified that the unique stable matching under the true
preferences is tps1, pi1, i2qq, ps2,Hq, pH, i3qu. Student i3 is thus unassigned in
the stable matching. Consider the following strategy profile (assuming capac-
ities are reported truthfully):

P̃i1 : s1 s2 P̃s1 : i1 i3

P̃i2 : s2 s1 P̃s2 : i1 i2

P̃i3 : s1 s2

Using Lemmas 1 and 2, it follows that pP̃I , P̃S , qq are undominated strate-
gies. The outcome under the Boston mechanism of strategy profile pP̃I , P̃S , qq
is tps1, pi1, i3qq, ps2, i2qu, which has i3 being assigned to s1.

It remains to verify that pP̃I , P̃S , qq constitutes a Nash equilibrium. Stu-
dents i1 and i3 are matched to their most-preferred school, so have no incentive
to deviate. Student i2 is declared unacceptable under P̃s1 , so being matched to
s2 is the best i2 can achieve. School s1 has no incentive to deviate, since i2 is
matched to s2 in the first round of the Boston mechanism, independent of the
preferences reported by s1. Similarly, i1 is matched to s1 in the first round of
the Boston mechanism, so s2 cannot obtain i1 by reporting other preferences.
Hence, s2 also has no incentive to deviate.
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